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Boolean D-Posets as the Factor Spaces

Frantisek Kopka'
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In this paper the Boolean D-posets, as factor spaces of the Borel sets of the real
line, are introduced.

1. INTRODUCTION

D-posets (Kopka, 1992; Kopka and Chovanec, 1994) (effect algebras;
Foulis and Bennett, 1994) are the algebraic models of quantum mechanics.
From this point of view the algebraic characteristics and some questions of
probability theory on D-posets are studied in Kopka (1995), Chovanec and
Kopka (n.d.), Greechie er al. (1995), Dvurecenskij and Pulmannova (1994),
and Jureckova and Riecan (1995). In this paper a way of factorizing the
system of Borel subsets of the real line is introduced which gives a Boolean
D-poset. Thus, in the classical theory nonstandard access can be exploited
for the solution of probability problems on D-posets.

Let (P, =) be a nonempty partially ordered set (poset). A partial binary
operation © is called a difference on P, and an element b < a is defined in
P if and only if ¢ = b and the following conditions are satisfied:

(D) b S a < b.

D2)b S (b Sa)=a.

M) Ifa<b<cthencSb=<=cSaand (c Sa) S(cODb) =
b Sa

Let (P, =<, ©) be a poset with a difference and let 1 be the greatest
element in P The structure (P, <, <, 1) is called a D-poset. A D-poset
(P, =, &, 1) satisfying the condition

(D4) if (an)s=1 C P, ay < ay+ for any n € N, then V,=1 a, € P
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is called a D-c-poset. (P, v, A, S, 1, 0) is called a D-lattice.

We say that the elements ¢, b € P are compatible, if 3d € P d =< q,
d=<b,and a ©d =<1 S b (equivalently, b S d < 1 S a).

Let P and T be two D-G-posets. A mapping w. P — T is called a
morphism of D-G-posets if the following conditions are satisfied:

M1) w(lp) = 1.
(M2) If (an)n=1 C P, a € P, a, 7 a, then w(a,) 7w (a).
M3)Ifa, b €P.a=<b,then w(b S a) = w(b) S wl(a).

If P is the c-algebra of Borel sets of the real line R, then the morphism
x: B(R) — T is called an observable on 7. The spectrum of an observable
x: B(R) — T is the least closed subset F of B(R) such that X(F) = 1.

A poset P with the least element 0 and the greatest element 1 is said
to be a Boolean D-poset if there is a binary operation “—” on P satisfying
the following conditions:

(BDl)a—0=aVaec?
BD2)a—(a—b)=b—(b—a)Va b eP.
BD3)a beP,a<b=>c—b=c—aVce?
(BD4) (a = b) —c=(a—c¢c)—bVa b, c €P.

2. BOOLEAN D-POSETS AS THE FACTOR SPACES

Let B(R) be the c-algebra of all Borel sets of a real line. Let 4 € B(R).
We denote B4(R) = {E € B(R), E C A4}.

Definition 1. Let x: B(R) — P be an observable on D-posets. We say
that the sets 4, B € B(R) are isomorphic by the observable x if there exists
an isomorphism ¢: B4 R) — Bp(R) such that x(Pp(E)) = x(E) for every
E € B 4(R). We write 4 =~, B. We remark that the relation =, is an equiva-
lence relation:

Definition 2. We say that the sets 4, B € B(R) are in the relation o,
(write A o, B), if there exist the sets 41, Bi € B(R), A1 C A, B C B such that:

1. x(41) = x(A), x(B1) = x(B).

2. Ay =, By.

Proposition 1. Let A o B; then x(4) = x(B).

Proof. Let A C A, By C B such that the conditions 1 and 2 from
Definition 2 are fulfilled. Let ¢ : B 4,(R) —> B, (R) be an isomorphism, such
that x(¢(E)) = x(E) for every E € B 4(R). Then
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x(B) = x(B1) = x(¢(A1) = x (A1) =x(4) =
Proposition 2. Let A, B € B(R), A C B. Then 4 o, B if and only if
x(A) = x(B).

Proof. The necessary condition is evident. Let A C B and x(A4) = x(B).
We put 41 = 4, By = A. Then the mapping ¢: BAR) — B4 R) such that
O(E) = E for every E € B 4(R) is an isomorphism and x(¢(E)) = x(E) for
every E € B4(R). Therefore 4o, B. =

Proposition 3. Let x: B(R) € P be an observable on a D-poset P. Let
Ay, A2, A € B(R), A1 C A, A C A. Now, A4; o, A and A4, o, A4 if and only
if (A] n Az) Ol A.

Proof. Let A1 C A, A» C Aand A 0. A4, A> 0.y A. By Proposition 2 we have
x(A\A4) = x(4) S x(4) = 0 = x(4) S x(4) = x(4A\4)
Then
x(A1 N A) = x(A1\(41 N (A\42)) = x(4) S x(A41 N (A\4))
=x(41) S0 =x(4) = x(A4)
By Proposition 2, (41 N A4>) o A The opposite assertion is evident. =
Theorem 1. The relation o is an equivalence relation on %B(R).

Proof. The reflexivity and symmetry are evident. We need to prove the
transitivity of a,. Let 4, B, C € B(R), A o, B, and B a,, C, i.e., there exist
the sets A4y, By, By, C; € %(R), ACABCBBCBGCCC such that
x(A1) = x(A), x(B1) = x(B) = x(B2), x(C2) = x(C), and 4; =, B, B> ~, C>.

Evidently B; o B, B> o, B, which is equivalent to (B; N B») o B. Let
¢1 and ¢2 be isomorphisms, ¢1: B4 (R) = B (R), ¢2: Ba(R) —> Bey(R)
such that x(¢;(E)) = x(E) for every E € B 4(R), x(d2(F)) = x(F) for
every F € Bp,(R). We denote A) = ¢ '(B) N B,). By the previous proposi-
tions we have

x(Ao) = x(¢1(¢1'(Bi N B)) = x(B1 N By) = x(B) = x(A)
Let (&1~ $2)(A4o) = Co. Then
x(Co) = x(92(91(4)) = x(P1(A) = x(4o) = x(B) = x(C)
The mapping V: B.4(R) — Bc,(R) defined by the formula Y(E) = (¢
02)(E) for every E € B 4(R) is an isomorphism, and
x(W(E)) = x(92Ap1(E))) = x(¢p1(E)) = x(E)

Therefore Ay =, Co. We have Ay C 4, Co C C, x(A4o) = x(A), x(Co) = x(C),
and Ao =~ Cy, which is equivalent to 4 o, C. m
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Corollary 1. Let A4, B, C € B(R), Ao, B, x(C) = 0. Then (4 U C) o,
B Ao, (BUC), (AU C)o, (B UC).

Corollary 2. Let A, B € B(R), Ao, B, A1, Bi € B(R), 41 C 4, B1 C
B, x(41) = 0, x(B1) = 0. Then (A\4) o (B\B)).

The factor space of B(R) corresponding to the equivalence relation oL,
is denoted B(R)/ay = {[A], A € B(R)}, where [4A] = {E € B(R), E a, A}.

Definition 3. Let [A], [B] € B(R)/a.. We say that the element [A] is
less or equal to an element [B] (denoted by [A4] < [B]) if for every 4 € [4]
there exists a Borel set B € [B] such that 4 C B.

It is evident that [A] < [A] for every [4] € B(R)/a,. Let now [A] =
[B] and [B] = [A]. Then for every 4, € [A] there exists B € [B] and 4, €
[A4] such that 41 © B C A,. Since x(A41) = x(A42), then x(41) = x(B). By
Proposition 2, A; o B, which is 41 € [B]. In an analogous way we prove
that if By € [B], then B; € [A]. Therefore [4] = [B].

Let 4, B, C € B(R) and [A] =< [B] = [C]. Then for every 4 € [A]
there exist B € [B] and C €[C] such that 4 C B C C. Therefore [4] = [C].

Theorem 2. The relation < on B(R)/o, from Definition 3 is a partial
ordering on B(R)/aL,.

Proposition 4. Let A, B € B(R), A o, B. Then (A\B) o, (B\4).

Proof. Without loss of generality we may assume that there exists an
isomorphism ¢ : B 4 R) — Ba(R) and x(E) = x(¢(E)) for every E € B4(R).
We need to construct an isomorphism

U: Bacann(R) = Bpcpa(R)

such that x(E) = x(W(E)) for every E € A'. We denote By = B\A4, Ay =
A\B. Recursively we construct the following sequences of subsets of the sets
A and B:

Bi = (4 N By Ci= G4 NANB A1 = ¢~y

B, = *4) N By C,= ¢X4)NANB A, = ¢7HCy)
Bi= ¢4 N By CGi= ¢4)NANnB Az = ¢ 3(C3)
B, = ¢"(4,-1) N By C,=¢"4-1)) N ANB A, = ¢7NCy)

It is evident that 4+1 C 4V, =0,1,...;CGNC=0ViFjij=1,2,
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...;B,—ﬂB,-Z(ZiVi#j, i,j: 1,2,...;¢(C,‘):Bf+1 U Ci+1 Vf: 1,2,
...;¢i(Af71\Af) = B; ‘v’,— = 1, 2,

We denote U=, C; = C, (4 N B)\C = H, B\\(U%| B) = G, Nizy 4;
= E. Then we have

¢4 N B) = ¢(A\4) = ¢(A\P(4) = B\(C1 U By)
= (4 N B)\C1) U (Bo\By) = (sz Ci) U (sz Bi) UHUG
O(H) = ¢((4 N B)\C) = ¢(4 N B\P(C)

() fin]omeop (fac) (o)

=HUG

Then x(H U G) = x(¢(H)) = x(H) and x(G) = x(HU G)\H) = x(H U
G) S x(H) = 0.

We denote E; = ¢'(E), i = 1,2,....Evidently E,C C;Vi= 1,2, ...,
and therefore E; N E; = 0 for every i # j, O(E;) = Eis1, Vi=1,2,....Then

firf-ieofoe]fi)

Therefore

*(E) = x($(E)) = x(E)) = x((u E,-)\(_G E))

= x(_yl E;

(MB\E = U (4-\4),  (B\A\G = U B,

S x

U Ef) =0
i=2

Evidently

X(A\B\E) = x(A\B),  x(B\A)\G) = x(B\A)

The mapping V: B(R).ene(R) = B(R) 4 c(R) defined by

V(M) = ,_L:Jl O'(M N (Ai-1\4:)
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for every M € (A\B)\E is an isomorphism and

x(W(M)) = x ,_L:Jl O'(M N (Ai-1\4) | = é X(O'(M N (4i-1\41)))

= é;l x(M N (A,'fl\A,')) = x(_@l (M n (A,]\A,))) = X(M)

Therefore (A\B) o (B\A). m
The consequence of Proposition 4 is the following assertion.

Theorem 3. Let Ay, A, B;, B € B(R), A1 0, B1, Ao, B, and 4; C A4, B,
C B. Then (A4\ A1) o (B\By).

Proof. With respect to Corollary 2 we may assume that 4; ==, By and
A = B. Let ¢, | be the isomorphisms ¢ : B R) — Bs(R) and V: B 4(R)
— Bp,(R). Then ¢p(4;) o, By. Indeed, (Y~ = ) is an isomorphism, ("
$): B, (R) = Byca(R), and

(T OUE) = x(OWTIE) = x(WI(E)) + x(WT(E)) = x(E)

for every E € Bp,(R). By Proposition 4, (¢(A4)\B1) o, (Bi\d(4,)). The
mapping N: B4 (R) > Brz(R),

NE) = ¢ (D(E) N (B\B1)) U (U™ ($(E) N B1))
for every E € B4 4,(R) is an isomorphism and
X(M(E) = x($@ 7' ($(E) N (B\B1)) Fx (9 ($(E) N BY))
= x(¢(E) N (B\B1) F x($(E) N By)
x(($(E) N (B\B1)) U (§(E) N By))
= x(¢(E)) = x(E)
for every E € B 4 4,(R). Therefore (A\4,) o, (B\B)). =

Theorem 3 enables us to define a partial binary operation S on the
factor space B(R)/a, in the following way.

Definition 4. Let [A], [B] € B(R)/o,. Now, [B] S [A] is defined if and
only if [4] = [B] (i.e., there exist 4] € [4] and B, € [B] such that 4, C
B)) and [B] S [4] = [B1\A4].

Theorem 4. A partial binary operation < is a difference on %B(R)/aL,.

Proof. The proof is obvious.
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The element [ R] is the greatest element in B(R)/oL, and therefore (B(R)/
Oy, <, S, [R]) is a D-poset.

Proposition 5. Let [A], [B] be two elements of B(R)/a.. Let By, B> €
[B]. Then

{[AN B, A€[A]} = {4 N B, 4 € [4]}
Proof. Let A1 €[A] be an arbitrary element. Without loss of generality
we can to assume that B; =~ B, and by Proposition 4, (B1\B,) =~ (B2\B)).

Let V be an isomorphism, Y: B g,15,(R) —> Bg,\5,(R), such that x (Y(E))
= x(E) for every E € RBp,\5,(R). We denote

Dy = (V41 N (B\B)\ 4,
Dy = (4; N (BI\B))\U~'(4; N (B2\B))
D; = (V41 N (B2\BY))) N A4

ObViOllSly ANB =4 NMB NBUD U Ds. If 4= (A]\(‘JI(D]) U Dz))
UD U \JI(Dz), then Ao, 4yand A N B, = A NB, N B, U \JI(Dz) U \JI(D3),
and therefore 41 N Bi o 4 N By, ie., [41 N Bi] € {[4A N By], 4 € [A]}.
We have

{[AN Bi], A €[A]} C {[4 N Bz], A €[A4]}

Similarly we prove that {[4 N By], A € [4]} C {[4A N Bi], 4 € [4]}.
Therefore {[A N Bi], A €[A]} = {[A N B:], A €[4]}. =

Proposition 6. Let M € [A; N By], A1 €[A], Bi €[B]. Then there exist
A €[A], B €[B]suchthat M = A N B.

Proof. Let us asume that M =, (4, N B;) and so M \ (4, N B;) =,
(4 N B)\ M.

Let ¥ be an isomorphism, V: B4ns )m(R) — Bancans, (R), such that
x(Y(E)) = x(E) for every E € B4,np,\u(R) we put

A= (A4\V(M\4) U (M\41), B = (B\V (M\B))) U (M\By)
Then 4 € [A], B€[Bl,and AN B =M =

Proposition 7. Let [D] = max{[4 N B], A €[A], B €[B]}. Then [D] =
[4] A [B].

Proof. By Proposition 6, for every D € [D] there exist 4 € [4], B €
[B] such that D = A N B. Then D C A4, D C B and therefore [D] = [4],
[D] = [B].
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Let [C] € B(R)/a, [C] = [4], [C] = [B], ie., for every C € [C]
there exist Ac € [A], Bc € [B] such that C C A¢, C C Bc. Then C C Ac
N Besince [C]=<[D]. m

Proposition 8. Let [A], [B] be two elements from %B(R)/o., B € [B].
Then for every two elements [Ci], [C2] € {[A N B], A € [A]} there exists
an element [C] € {[4 N B], A €[A]} such that [Ci] = [C] and [C:] = [C].

Proof. Let A1, A> €[A] be such that [4; N B] = [C1], [42 N B] = [C3].
Without loss of generality we assume that (4;\42) =~ (42\4)). Let ¢ be an
isomorphism ¢ : B 4\ 4,(R) — B.an4,(R) such that x(¢p(E)) = x(E) for every
E € Bp4(R). We denote

Dy = [(A\AD\G((A\4) N BN B, D1 = ¢ ' (d((41\42) N B)\B)
and we put A] = (A\¢"'(D2) U Dy, A = (4\G(D))) U Dy. Evidently
AfoAs, (AT N B)a, (AN B)yand 44 N BCAINB AANBC A5N B.
Therefore we put [C] = [4{] = [45]. =

Theorem 5. Let x:B(R) — T be an observable on a D-poset 7. Let the
spectrum of the observable x be finite. Then B(R)/0., is a D-lattice of pairwise

compatible elements, which is a Boolean D-poset (Chovanec and Kopka,
1995).

Proof. Let [A], [B] € B(R)/o, be arbitrary two elements. By Proposition
8 and Proposition 7 there exists

[D] = max{[4 N B], A €[A4], B €[B]} = [4] A [B]

Therefore B(R)/aL, is a D-lattice.
Let D €[D]. Then there exist elements 4 € [4] and B € [B] such that
D = A N B. Then
[4] ©[D] = [4\D] = [4\B] < [R\B] = [R] = [B] = [B]*

which implies the compatibility of [4] and [B]. =
n g

[(Z

Fig. 1.
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Example 1. Let a, b, ¢ be different real numbers. Let x be the observable
on a D-poset of the unit interval [0, 1], defined by.

(0 ifE=0
04 ifac€Eb c¢E
03 ifbeE ac¢E
03 ifc€Eab¢E
X(E)= 107 ifa, b €E c¢E
<0.7 ifa,c € E,b ¢ E
0.6 ifb,cE€E a¢kE
1 ifa,b,c€E

Then the factorization by Thebrem 5 is sketched in Fig. 1.
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