Boolean D-Posets as the Factor Spaces

František Kôpka¹

Received July 4, 1997

In this paper the Boolean D-posets, as factor spaces of the Borel sets of the real line, are introduced.

1. INTRODUCTION

D-posets (Kôpka, 1992; Kôpka and Chovanec, 1994) (effect algebras; Foulis and Bennett, 1994) are the algebraic models of quantum mechanics. From this point of view the algebraic characteristics and some questions of probability theory on D-posets are studied in Kôpka (1995), Chovanec and Kôpka (n.d.), Greechie *et al.* (1995), Dvurečenskij and Pulmannová (1994), and Jurečková and Riečan (1995). In this paper a way of factorizing the system of Borel subsets of the real line is introduced which gives a Boolean D-poset. Thus, in the classical theory nonstandard access can be exploited for the solution of probability problems on D-posets.

Let (P, \leq) be a nonempty partially ordered set (poset). A partial binary operation \ominus is called a *difference* on *P*, and an element $b \ominus a$ is defined in *P* if and only if $a \leq b$ and the following conditions are satisfied:

(D1) $b \ominus a \leq b$. $(D2)$ $b \ominus (b \ominus a) = a$. (D3) If $a \le b \le c$, then $c \ominus b \le c \ominus a$ and $(c \ominus a) \ominus (c \ominus b)$ $b \ominus a$

Let (P, \leq, \ominus) be a poset with a difference and let 1 be the greatest element in *P*. The structure $(P, \leq, \ominus, 1)$ is called a *D-poset*. A D-poset $(P, \leq, \ominus, 1)$ satisfying the condition

(D4) if $(a_n)_{n=1}^{\infty} \subseteq P$, $a_n \le a_{n+1}$ for any $n \in N$, then $\vee_{n=1}^{\infty} a_n \in P$

¹ Department of Mathematics, Military Academy, 031 19 Liptovský Mikuláš, Slovakia.

93

is called a *D*- σ -*poset.* (*P*, \vee , \wedge , \ominus , 1, 0) is called a D-lattice.

We say that the elements *a,* $b \in P$ are compatible, if $\exists d \in P$, $d \le a$, $d \leq b$, and $a \ominus d \leq 1 \ominus b$ (equivalently, $b \ominus d \leq 1 \ominus a$).

Let *P* and *T* be two D- σ -posets. A mapping *w*: $P \rightarrow T$ is called a morphism of D - σ -posets if the following conditions are satisfied:

 $(M1)$ $w(1_p) = 1_p$. $(M2)$ If $(a_n)_{n=1}^{\infty} \subseteq P$, $a \in P$, $a_n \nearrow a$, then $w(a_n) \nearrow w(a)$. (M3) If *a*, $b \in P$, $a \leq b$, then $w(b \ominus a) = w(b) \ominus w(a)$.

If *P* is the σ -algebra of Borel sets of the real line *R*, then the morphism *x*: $\mathcal{B}(R) \rightarrow T$ is called an observable on *T*. The spectrum of an observable *x*: $\mathcal{R}(R) \rightarrow T$ is the least closed subset *F* of $\mathcal{R}(\mathcal{R})$ such that $X(F) = 1$.

A poset \mathcal{P} with the least element 0 and the greatest element 1 is said to be a *Boolean D-poset* if there is a binary operation ∞ on \mathcal{P} satisfying the following conditions:

(BD1) $a - 0 = a \ \forall \ a \in \mathcal{P}$. (BD2) $a - (a - b) = b - (b - a) \ \forall a, b \in \mathcal{P}$. (BD3) *a*, $b \in \mathcal{P}$, $a \le b \Rightarrow c - b \le c - a \; \forall \; c \in \mathcal{P}$. (BD4) $(a - b) - c = (a - c) - b \ \forall a, b, c \in \mathcal{P}$.

2. BOOLEAN D-POSETS AS THE FACTOR SPACES

Let $\mathcal{B}(R)$ be the σ -algebra of all Borel sets of a real line. Let $A \in \mathcal{B}(R)$. We denote $\mathcal{B}_A(R) = \{E \in \mathcal{B}(R), E \subseteq A\}.$

Definition 1. Let *x*: $\mathcal{B}(R) \rightarrow P$ be an observable on D-posets. We say that the sets *A, B* $\in \mathcal{B}(R)$ are isomorphic by the observable *x* if there exists an isomorphism ϕ : $\mathcal{B}_A(R) \to \mathcal{B}_B(R)$ such that $x(\phi(E)) = x(E)$ for every $E \in \mathcal{B}_A(R)$. We write $A \simeq_{\mathcal{X}} B$. We remark that the relation $\simeq_{\mathcal{X}}$ is an equivalence relation:

Definition 2. We say that the sets *A,* $B \in \mathcal{B}(R)$ are in the relation α_x (write $A \alpha_x B$), if there exist the sets $A_1, B_1 \in \mathcal{B}(R)$, $A_1 \subseteq A$, $B_1 \subseteq B$ such that: 1. $x(A_1) = x(A), x(B_1) = x(B).$

2. $A_1 \simeq_X B_1$.

Proposition 1. Let $A \alpha_x B$; then $x(A) = x(B)$.

Proof. Let $A_1 \subset A$, $B_1 \subset B$ such that the conditions 1 and 2 from Definition 2 are fulfilled. Let ϕ : $\mathcal{B}_{A_1}(R) \to \mathcal{B}_{B_1}(R)$ be an isomorphism, such that $x(\phi(E)) = x(E)$ for every $E \in \mathcal{B}_{A_1}(R)$. Then

$$
x(B) = x(B_1) = x(\phi(A_1)) = x(A_1) = x(A) \quad \blacksquare
$$

Proposition 2. Let *A*, $B \in \mathcal{B}(R)$, $A \subset B$. Then $A \alpha_x B$ if and only if $x(A) = x(B)$.

Proof. The necessary condition is evident. Let $A \subseteq B$ and $x(A) = x(B)$. We put $A_1 = A$, $B_1 = A$. Then the mapping $\phi : \mathcal{B}_A(R) \to \mathcal{B}_A(R)$ such that $\phi(E) = E$ for every $E \in \mathcal{B}_A(R)$ is an isomorphism and $x(\phi(E)) = x(E)$ for every $E \in \mathcal{B}_A(R)$. Therefore $A \alpha_r B$.

Proposition 3. Let *x*: $\mathcal{B}(R) \in P$ be an observable on a D-poset P. Let $A_1, A_2, A \in \mathcal{B}(R), A_1 \subset A, A_2 \subset A$. Now, $A_1 \alpha_x A$ and $A_2 \alpha_x A$ if and only if $(A_1 \cap A_2)$ $\alpha_x A$.

Proof. Let $A_1 \subset A$, $A_2 \subset A$ and $A_1 \alpha_x A$, $A_2 \alpha_x A$. By Proposition 2 we have $x(A \setminus A_1) = x(A) \ominus x(A_1) = 0 = x(A) \ominus x(A_2) = x(A \setminus A_2)$

Then

$$
x(A_1 \cap A_2) = x(A_1 \setminus (A_1 \cap (A \setminus A_2))) = x(A_1) \ominus x(A_1 \cap (A \setminus A_2))
$$

= $x(A_1) \ominus 0 = x(A_1) = x(A)$

By Proposition 2, $(A_1 \cap A_2)$ $\alpha_x A$. The opposite assertion is evident. \blacksquare

Theorem 1. The relation α_x is an equivalence relation on $\mathcal{B}(R)$.

Proof. The reflexivity and symmetry are evident. We need to prove the transitivity of α_x . Let *A, B, C* $\in \mathcal{B}(R)$, *A* α_x *B*, and *B* α_x *C*, i.e., there exist the sets A_1 , B_1 , B_2 , $C_2 \in \mathcal{B}(R)$, $A_1 \subset A$, $B_1 \subset B$, $B_2 \subset B$, $C_2 \subset C$ such that $x(A_1) = x(A), x(B_1) = x(B) = x(B_2), x(C_2) = x(C), \text{ and } A_1 \simeq_{x} B_1, B_2 \simeq_{x} C_2.$

Evidently $B_1 \alpha_x B$, $B_2 \alpha_x B$, which is equivalent to $(B_1 \cap B_2) \alpha_x B$. Let ϕ_1 and ϕ_2 be isomorphisms, $\phi_1: \mathcal{B}_{A_1}(R) \to \mathcal{B}_{B_1}(R)$, $\phi_2: \mathcal{B}_{B_2}(R) \to \mathcal{B}_{C_2}(R)$ such that $x(\phi_1(E)) = x(E)$ for every $E \in \mathcal{B}_{A_1}(R)$, $x(\phi_2(F)) = x(F)$ for every $F \in \mathcal{B}_{B_2}(R)$. We denote $A_0 = \phi_1^{-1}(B_1 \cap B_2)$. By the previous propositions we have

$$
x(A_0) = x(\phi_1(\phi_1^{-1}(B_1 \cap B_2))) = x(B_1 \cap B_2) = x(B) = x(A)
$$

Let $(\phi_1 \circ \phi_2)(A_0) = C_0$. Then

$$
x(C_0) = x(\phi_2(\phi_1(A_0))) = x(\phi_1(A_0)) = x(A_0) = x(B) = x(C)
$$

The mapping $\psi: \mathcal{B}_{A_0}(R) \to \mathcal{B}_{C_0}(R)$ defined by the formula $\psi(E) = (\phi_1 \circ$ $\phi_2(E)$ for every $E \in \mathcal{B}_{A_0}(R)$ is an isomorphism, and

$$
x(\psi(E)) = x(\phi_2(\phi_1(E))) = x(\phi_1(E)) = x(E)
$$

Therefore $A_0 \simeq_X C_0$. We have $A_0 \subseteq A$, $C_0 \subseteq C$, $x(A_0) = x(A)$, $x(C_0) = x(C)$, and $A_0 \simeq_X C_0$, which is equivalent to $A \alpha_X C$.

Corollary 1. Let *A, B, C* $\in \mathcal{B}(R)$, *A* α_x *B, x(C)* = 0. Then $(A \cup C) \alpha_x$ *B,* $A \alpha_x (B \cup C)$, $(A \cup C) \alpha_x (B \cup C)$.

Corollary 2. Let $A, B \in \mathcal{B}(R), A \alpha_x B, A_1, B_1 \in \mathcal{B}(R), A_1 \subset A, B_1 \subset A$ *B,* $x(A_1) = 0$, $x(B_1) = 0$. Then $(A \setminus A_1) \alpha_x (B \setminus B_1)$.

The factor space of $\mathcal{B}(R)$ corresponding to the equivalence relation α_x is denoted $\mathcal{B}(R)/\alpha_x = \{[A], A \in \mathcal{B}(R)\}\$, where $[A] = \{E \in \mathcal{B}(R), E \alpha_x A\}$.

Definition 3. Let [A], [B] $\in \mathcal{B}(R)/\alpha_r$. We say that the element [A] is less or equal to an element [*B*] (denoted by $[A] \leq [B]$) if for every $A \in [A]$ there exists a Borel set $B \in [B]$ such that $A \subseteq B$.

It is evident that $[A] \leq [A]$ for every $[A] \in \mathcal{B}(R)/\alpha_x$. Let now $[A] \leq$ [*B*] and $[B] \leq [A]$. Then for every $A_1 \in [A]$ there exists $B \in [B]$ and $A_2 \in$ $[A]$ such that $A_1 \subseteq B \subseteq A_2$. Since $x(A_1) = x(A_2)$, then $x(A_1) = x(B)$. By Proposition 2, $A_1 \alpha_x B$, which is $A_1 \in [B]$. In an analogous way we prove that if $B_1 \in [B]$, then $B_1 \in [A]$. Therefore $[A] = [B]$.

Let *A*, *B*, $C \in \mathcal{B}(R)$ and $[A] \leq [B] \leq [C]$. Then for every $A \in [A]$ there exist $B \in [B]$ and $C \in [C]$ such that $A \subseteq B \subseteq C$. Therefore $[A] = [C]$.

Theorem 2. The relation \leq on $\Re(R)/\alpha_r$ from Definition 3 is a partial ordering on $\mathcal{B}(R)/\alpha_r$.

Proposition 4. Let *A*, $B \in \mathcal{B}(R)$, $A \alpha_x B$. Then $(A \ B) \alpha_x (B \ A)$.

Proof. Without loss of generality we may assume that there exists an isomorphism $\phi : \mathcal{B}_A(R) \to \mathcal{B}_B(R)$ and $x(E) = x(\phi(E))$ for every $E \in \mathcal{B}_A(R)$. We need to construct an isomorphism

$$
\psi \colon \mathcal{B}_{A' \subseteq (A \setminus B)}(R) \to \mathcal{B}_{B' \subseteq (B \setminus A)}(R)
$$

such that $x(E) = x(\psi(E))$ for every $E \in A'$. We denote $B_0 = B \setminus A$, $A_0 =$ $A\$ B. Recursively we construct the following sequences of subsets of the sets *A* and *B*:

It is evident that $A_{i+1} \subseteq A_i \ \forall i = 0, 1, \ldots; C_i \cap C_j = \emptyset \ \forall i \neq j, i, j = 1, 2,$

...; $B_i \cap B_j = \emptyset$ $\forall i \neq j$, $i, j = 1, 2, \ldots$; $\phi(C_i) = B_{i+1} \cup C_{i+1} \forall i = 1, 2$, \ldots ; $\phi^{i}(A_{i-1}\backslash A_{i}) = B_{i} \ \forall_{i} = 1, 2, \ldots$ We denote $\bigcup_{i=1}^{\infty} C_i = C$, $(A \cap B) \setminus C = H$, $B_0 \setminus (\bigcup_{i=1}^{\infty} B_i) = G$, $\bigcap_{i=1}^{\infty} A_i$ $= E$. Then we have

$$
\phi(A \cap B) = \phi(A \setminus A_0) = \phi(A) \setminus \phi(A_0) = B \setminus (C_1 \cup B_1)
$$

\n
$$
= ((A \cap B) \setminus C_1) \cup (B_0 \setminus B_1) = \left(\bigcup_{i=2}^{\infty} C_i\right) \cup \left(\bigcup_{i=2}^{\infty} B_i\right) \cup H \cup G
$$

\n
$$
\phi(H) = \phi((A \cap B) \setminus C) = \phi(A \cap B) \setminus \phi(C)
$$

\n
$$
= \left(\left(\bigcup_{i=2}^{\infty} C_i\right) \cup \left(\bigcup_{i=2}^{\infty} B_i\right) \cup H \cup G\right) \setminus \left(\left(\bigcup_{i=2}^{\infty} C_i\right) \cup \left(\bigcup_{i=2}^{\infty} B_i\right)\right)
$$

\n
$$
= H \cup G
$$

Then $x(H \cup G) = x(\phi(H)) = x(H)$ and $x(G) = x((H \cup G)\backslash H) = x(H \cup G)$ $G \ominus x(H) = 0.$

We denote $E_i = \phi^i(E)$, $i = 1, 2, \dots$ Evidently $E_i \subseteq C_i \,\forall i = 1, 2, \dots$, and therefore $E_i \cap E_j = \emptyset$ for every $i \neq j$, $\phi(E_i) = E_{i+1}$, $\forall i = 1, 2, \ldots$. Then

$$
\phi\left(\bigcup_{i=1}^{\infty} E_i\right) = \bigcup_{i=2}^{\infty} E_i, \qquad x\left(\bigcup_{i=2}^{\infty} E_i\right) = x\left(\phi\left(\bigcup_{i=1}^{\infty} E_i\right)\right) = x\left(\bigcup_{i=1}^{\infty} E_i\right)
$$

Therefore

$$
x(E) = x(\phi(E)) = x(E_1) = x\left(\bigcup_{i=1}^{\infty} E_i\right)\setminus \left(\bigcup_{i=2}^{\infty} E_i\right)
$$

= $x\left(\bigcup_{i=1}^{\infty} E_i\right) \ominus x\left(\bigcup_{i=2}^{\infty} E_i\right) = 0$

Evidently

$$
(A \setminus B) \setminus E = \bigcup_{i=1}^{\infty} (A_{i-1} \setminus A_i), \qquad (B \setminus A) \setminus G = \bigcup_{i=1}^{\infty} B_i
$$

$$
x((A \setminus B) \setminus E) = x(A \setminus B), \qquad x(B \setminus A) \setminus G = x(B \setminus A)
$$

The mapping ψ : $\mathcal{B}(R)_{(A\setminus B)\setminus E}(R) \to \mathcal{B}(R)_{(B\setminus A)\setminus G}(R)$ defined by

$$
\psi(M) = \bigcup_{i=1}^{\infty} \phi^{i}(M \cap (A_{i-1} \setminus A_i))
$$

for every $M \in (A \backslash B) \backslash E$ is an isomorphism and

$$
x(\psi(M)) = x\left(\bigcup_{i=1}^{\infty} \phi^{i}(M \cap (A_{i-1} \setminus A_i))\right) = \bigoplus_{i=1}^{\infty} x(\phi^{i}(M \cap (A_{i-1} \setminus A_i)))
$$

=
$$
\bigoplus_{i=1}^{\infty} x(M \cap (A_{i-1} \setminus A_i)) = x\left(\bigcup_{i=1}^{\infty} (M \cap (A_{i-1} \setminus A_i))\right) = x(M)
$$

Therefore $(A \setminus B)$ α_x $(B \setminus A)$.

The consequence of Proposition 4 is the following assertion.

Theorem 3. Let A_1 , A , B_1 , $B \in \mathcal{B}(R)$, $A_1 \mathcal{A}_x B_1$, $A \mathcal{A}_x B$, and $A_1 \subset A$, B_1 \subset *B*. Then $(A \setminus A_1)$ α_x $(B \setminus B_1)$.

Proof. With respect to Corollary 2 we may assume that $A_1 \simeq_{\rm r} B_1$ and $A \simeq_{\mathfrak{X}} B$. Let ϕ , ψ be the isomorphisms $\phi : \mathcal{B}_{A}(R) \to \mathcal{B}_{B}(R)$ and $\psi : \mathcal{B}_{A}(R)$ $\rightarrow \mathcal{B}_{B_1}(R)$. Then $\phi(A_1) \alpha_x B_1$. Indeed, $(\psi^{-1} \circ \phi)$ is an isomorphism, $(\psi^{-1} \circ$ ϕ : $\mathcal{B}_{B_1}(R) \to \mathcal{B}_{\phi(A_1)}(R)$, and

$$
x((\psi^{-1} \circ \phi)(E)) = x(\phi(\psi^{-1}(E))) = x(\psi^{-1}(E)) + x(\psi(\psi^{-1}(E))) = x(E)
$$

for every $E \in \mathcal{B}_{B_1}(R)$. By Proposition 4, $(\phi(A_1) \setminus B_1) \alpha_x (B_1 \setminus \phi(A_1))$. The mapping $\eta: \mathcal{B}_{A \setminus A_1}(R) \to \mathcal{B}_{B \setminus B_1}(R)$,

$$
\eta(E) = \phi(\phi^{-1}(\phi(E) \cap (B \setminus B_1))) \cup \phi(\psi^{-1}(\phi(E) \cap B_1))
$$

for every $E \in \mathcal{B}_{A \setminus A_1}(R)$ is an isomorphism and

$$
x(\eta(E)) = x(\phi(\phi^{-1}(\phi(E) \cap (B \setminus B_1))) \oplus x(\phi(\psi^{-1}(\phi(E) \cap B_1)))
$$

= $x(\phi(E) \cap (B \setminus B_1)) \oplus x(\phi(E) \cap B_1)$
= $x((\phi(E) \cap (B \setminus B_1)) \cup (\phi(E) \cap B_1))$
= $x(\phi(E)) = x(E)$

for every $E \in \mathcal{B}_{A \setminus A_1}(R)$. Therefore $(A \setminus A_1) \alpha_x (B \setminus B_1)$.

Theorem 3 enables us to define a partial binary operation \ominus on the factor space $\mathcal{B}(R)/\alpha_x$ in the following way.

Definition 4. Let [A], $[B] \in \mathcal{R}(R)/\alpha_{x}$. Now, $[B] \ominus [A]$ is defined if and only if $[A] \leq [B]$ (i.e., there exist $A_1 \in [A]$ and $B_1 \in [B]$ such that $A_1 \subseteq$ *B*₁) and $[B] \ominus [A] = [B_1 \setminus A_1]$.

Theorem 4. A partial binary operation \ominus is a difference on $\mathcal{B}(R)/\alpha_{x}$.

Proof. The proof is obvious.

Boolean D-Posets as the Factor Spaces

The element [R] is the greatest element in $\mathcal{B}(R)/\alpha_{r}$ and therefore $(\mathcal{B}(R))$ $\alpha_{x} \leq \Theta$. [R]) is a D-poset.

Proposition 5. Let [A], [B] be two elements of $\Re(R)/\alpha_x$. Let $B_1, B_2 \in$ $[B]$. Then

$$
\{[A \cap B_1], A \in [A]\} = \{[A \cap B_2], A \in [A]\}
$$

Proof. Let $A_1 \in [A]$ be an arbitrary element. Without loss of generality we can to assume that $B_1 \simeq_{X} B_2$, and by Proposition 4, $(B_1 \backslash B_2) \simeq_{X} (B_2 \backslash B_1)$.

Let ψ be an isomorphism, ψ : $\mathcal{B}_{B_1\setminus B_2}(R) \to \mathcal{B}_{B_2\setminus B_1}(R)$, such that $x(\psi(E))$ $= x(E)$ for every $E \in \mathcal{B}_{R_1 \setminus R_2}(R)$. We denote

$$
D_1 = (\psi^{-1}(A_1 \cap (B_2 \setminus B_1))) \setminus A_1
$$

\n
$$
D_2 = (A_1 \cap (B_1 \setminus B_2)) \setminus \psi^{-1}(A_1 \cap (B_2 \setminus B_1))
$$

\n
$$
D_3 = (\psi^{-1}(A_1 \cap (B_2 \setminus B_1))) \cap A_1
$$

Obviously $A_1 \cap B_1 = A_1 \cap B_1 \cap B_2 \cup D_2 \cup D_3$. If $A = (A_1 \setminus (\psi(D_1) \cup D_2))$ $\bigcup D_1 \cup \psi(D_2)$, then $A \alpha_x A_1$ and $A \cap B_2 = A_1 \cap B_1 \cap B_2 \cup \psi(D_2) \cup \psi(D_3)$, and therefore $A_1 \cap B_1 \alpha_x A \cap B_2$, i.e., $[A_1 \cap B_1] \in \{[A \cap B_2], A \in [A]\}.$ We have

$$
\{[A \cap B_1], A \in [A]\} \subseteq \{[A \cap B_2], A \in [A]\}
$$

Similarly we prove that $\{[A \cap B_2], A \in [A]\} \subseteq \{[A \cap B_1], A \in [A]\}.$ Therefore $\{[A \cap B_1], A \in [A]\} = \{[A \cap B_2], A \in [A]\}.$

Proposition 6. Let $M \in [A_1 \cap B_1], A_1 \in [A], B_1 \in [B]$. Then there exist $A \in [A], B \in [B]$ such that $M = A \cap B$.

Proof. Let us asume that $M \simeq_{x} (A_1 \cap B_1)$ and so $M \setminus (A_1 \cap B_1) \simeq_{x}$ $(A_1 \cap B_1) \setminus M$.

Let ψ be an isomorphism, $\psi: \mathcal{B}_{(A_1 \cap B_1) \setminus M}(R) \to \mathcal{B}_{M \setminus (A_1 \cap B_1)}(R)$, such that $x(\psi(E)) = x(E)$ for every $E \in \mathcal{B}_{(A_1 \cap B_1) \setminus M}(R)$ we put

 $A = (A_1 \backslash \psi^{-1}(M \backslash A_1)) \cup (M \backslash A_1), \qquad B = (B_1 \backslash \psi^{-1}(M \backslash B_1)) \cup (M \backslash B_1)$

Then $A \in [A], B \in [B]$, and $A \cap B = M$.

Proposition 7. Let $[D] = \max\{[A \cap B], A \in [A], B \in [B]\}$. Then $[D] =$ $[A] \wedge [B]$.

Proof. By Proposition 6, for every $D \in [D]$ there exist $A \in [A], B \in$ [B] such that $D = A \cap B$. Then $D \subseteq A$, $D \subseteq B$ and therefore $[D] \leq [A]$, $[D] \leq [B].$

Let $[C] \in \mathcal{B}(R)/\alpha_x$, $[C] \leq [A]$, $[C] \leq [B]$, i.e., for every $C \in [C]$ there exist $A_C \in [A]$, $B_C \in [B]$ such that $C \subset A_C$, $C \subset B_C$. Then $C \subset A_C$ $\bigcap B_C$ since $[C] \leq [D]$.

Proposition 8. Let [A], [B] be two elements from $\mathcal{B}(R)/\alpha_{x}$, $B \in [B]$. Then for every two elements $[C_1]$, $[C_2] \in \{[A \cap B], A \in [A]\}$ there exists an element $[C] \in \{[A \cap B], A \in [A]\}$ such that $[C_1] \leq [C]$ and $[C_2] \leq [C]$.

Proof. Let $A_1, A_2 \in [A]$ be such that $[A_1 \cap B] = [C_1], [A_2 \cap B] = [C_2]$. Without loss of generality we assume that $(A_1 \setminus A_2) \simeq_X (A_2 \setminus A_1)$. Let ϕ be an isomorphism $\phi : \mathcal{B}_{A_1 \setminus A_2}(R) \to \mathcal{B}_{A_2 \setminus A_1}(R)$ such that $x(\phi(E)) = x(E)$ for every $E \in \mathcal{B}_{A_1 \setminus A_2}(R)$. We denote

$$
D_2 = [(A_2 \setminus A_1) \setminus \phi((A_1 \setminus A_2) \cap B)] \cap B, \qquad D_1 = \phi^{-1}(\phi((A_1 \setminus A_2) \cap B) \setminus B)
$$

and we put $A'_1 = (A_1 \backslash \phi^{-1}(D_2)) \cup D_2$, $A'_2 = (A_2 \backslash \phi(D_1)) \cup D_1$. Evidently $A'_1\alpha_xA'_2$, $(A'_1 \cap B)\alpha_x(A'_2 \cap B)$ and $A_1 \cap B \subseteq A'_1 \cap B$, $A_2 \cap B \subseteq A'_2 \cap B$. Therefore we put $[C] = [A_1'] = [A_2']$.

Theorem 5. Let $x: B(R) \to T$ be an observable on a D-poset T. Let the spectrum of the observable x be finite. Then $\mathcal{B}(R)/\alpha_x$ is a D-lattice of pairwise compatible elements, which is a Boolean D-poset (Chovanec and Kôpka, 1995).

Proof. Let [A], [B] $\in \mathcal{B}(R)/\alpha_x$ be arbitrary two elements. By Proposition 8 and Proposition 7 there exists

 $[D] = \max\{[A \cap B], A \in [A], B \in [B]\} = [A] \wedge [B]$

Therefore $\mathcal{B}(R)/\alpha_{r}$ is a D-lattice.

Let $D \in [D]$. Then there exist elements $A \in [A]$ and $B \in [B]$ such that $D = A \cap B$. Then

$$
[A] \ominus [D] = [A \setminus D] = [A \setminus B] \leq [R \setminus B] = [R] \ominus [B] = [B]^{\perp}
$$

which implies the compatibility of $[A]$ and $[B]$.

Fig. 1.

Boolean D-Posets as the Factor Spaces 101

Example 1. Let *a, b, c* be different real numbers. Let *x* be the observable on a D-poset of the unit interval [0, 1], defined by.

$$
x(E) = \begin{cases} 0 & \text{if } E = \emptyset \\ 0.4 & \text{if } a \in E, b, c \notin E \\ 0.3 & \text{if } b \in E, a, c \notin E \\ 0.3 & \text{if } c \in E, a, b \notin E \\ 0.7 & \text{if } a, b \in E, c \notin E \\ 0.7 & \text{if } a, c \in E, b \notin E \\ 0.6 & \text{if } b, c \in E, a \notin E \\ 1 & \text{if } a, b, c \in E \end{cases}
$$

Then the factorization by Theorem 5 is sketched in Fig. 1.

REFERENCES

- Chovanec, F., and Kôpka, F. (1995). D-lattices, *International Journal of Theoretical Physics*, 34, 1297-1302.
- Chovanec, F., and Kôpka, F. (1997). Boolean D-posets, *Tatra Mountains Mathematical Publications*, **10**, 183-197.
- Dvurečenskij, A., and Pulmannová S. (1994). Difference posets, effects, and quantum measurements, *International Journal of Theoretical Physics*, 33, 819-850.
- Foulis, D. J., and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics, *Foundations of Physics*, **24**, 1331-1352.
- Greechie, R. J., Foulis, D. J., and Pulmannová, S. (1995). The center of an effect algebra, *Order*, **12**, 91–106.
- Jurečková, M., and Riečan, B. (1995). Strong law of large numbers in D-posets, *Journal of Theoretical Physics*, 348, 1495-1500.
- Kôpka, F. (1992). D-posets of fuzzy sets, *Tatra Mountains Mathematical Publications*. 1.83–89.
- Kôpka, F. (1995). On compatibility in D-posets, *International Journal of Theoretical Physics*, **34**, 1525-1531.
- Kôpka, F., and Chovanec, F. (1994). D-posets, *Mathematica Slovaca*, 44, 21–34.