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Boolean D-Posets as the Factor Spaces

FrantisÏ ek KoÃpka1
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In this paper the Boolean D-posets, as factor spaces of the Borel sets of the real
line, are introduced.

1. INTRODUCTION

D-posets (KoÃpka, 1992; KoÃpka and Chovanec, 1994) (effect algebras;
Foulis and Bennett, 1994) are the algebraic models of quantum mechanics.

From this point of view the algebraic characteristics and some questions of

probability theory on D-posets are studied in KoÃpka (1995), Chovanec and

KoÃpka (n.d.), Greechie et al. (1995), DvurecÏ enskij and PulmannovaÂ(1994),

and JurecÏ kovaÂand RiecÏ an (1995). In this paper a way of factorizing the
system of Borel subsets of the real line is introduced which gives a Boolean

D-poset. Thus, in the classical theory nonstandard access can be exploited

for the solution of probability problems on D-posets.

Let (P, # ) be a nonempty partially ordered set (poset). A partial binary

operation * is called a difference on P, and an element b * a is defined in

P if and only if a # b and the following conditions are satisfied:

(D1) b * a # b.
(D2) b * (b * a) 5 a.
(D3) If a # b # c, then c * b # c * a and (c * a) * (c * b) 5

b * a.

Let (P, # , * ) be a poset with a difference and let 1 be the greatest

element in P. The structure (P, # , * , 1) is called a D-poset. A D-poset

(P, # , * , 1) satisfying the condition

(D4) if (an)
`
n 5 1 # P, an # an+1 for any n P N, then Ú `

n 5 1 an P P
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is called a D- s -poset. (P, Ú , Ù , * , 1, 0) is called a D-lattice.

We say that the elements a, b P P are compatible, if $ d P P, d # a,
d # b, and a * d # 1 * b (equivalently, b * d # 1 * a).

Let P and T be two D- s -posets. A mapping w: P ® T is called a

morphism of D- s -posets if the following conditions are satisfied:

(M1) w (1P) 5 1T.

(M2) If (an)
`
n 5 1 # P, a P P, an p a, then w (an) p w (a).

(M3) If a, b P P, a # b, then w (b * a) 5 w (b) * w (a).

If P is the s -algebra of Borel sets of the real line R, then the morphism

x: @(R) ® T is called an observable on T. The spectrum of an observable
x: @(R) ® T is the least closed subset F of @(5) such that X (F ) 5 1.

A poset 3 with the least element 0 and the greatest element 1 is said

to be a Boolean D-poset if there is a binary operation ª 2 º on 3 satisfying

the following conditions:

(BD1) a 2 0 5 a " a P 3.

(BD2) a 2 (a 2 b) 5 b 2 (b 2 a) " a, b P 3.

(BD3) a, b P 3, a # b Þ c 2 b # c 2 a " c P 3.
(BD4) (a 2 b) 2 c 5 (a 2 c) 2 b " a, b, c P 3.

2. BOOLEAN D-POSETS AS THE FACTOR SPACES

Let @(R) be the s -algebra of all Borel sets of a real line. Let A P @(R).

We denote @A(R) 5 {E P @(R), E # A}.

Definition 1. Let x: @(R) ® P be an observable on D-posets. We say

that the sets A, B P @(R) are isomorphic by the observable x if there exists
an isomorphism f : @A(R) ® @B(R) such that x ( f (E )) 5 x (E ) for every

E P @A(R). We write A . x B. We remark that the relation . x is an equiva-

lence relation:

Definition 2. We say that the sets A, B P @(R) are in the relation a x

(write A a x B), if there exist the sets A1, B1 P @(R), A1 # A, B1 # B such that:

1. x (A1) 5 x (A ), x (B1) 5 x (B).
2. A1 . x B1.

Proposition 1. Let A a x B; then x (A ) 5 x (B).

Proof. Let A1 # A, B1 # B such that the conditions 1 and 2 from

Definition 2 are fulfilled. Let f : @A1(R) ® @B1(R) be an isomorphism, such

that x ( f (E )) 5 x (E ) for every E P @A1(R). Then
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x (B) 5 x (B1) 5 x ( f (A1)) 5 x (A1) 5 x (A ) n

Proposition 2. Let A, B P @(R), A # B. Then A a x B if and only if
x (A ) 5 x (B).

Proof. The necessary condition is evident. Let A # B and x (A ) 5 x (B).

We put A1 5 A, B1 5 A. Then the mapping f : @A(R) ® @A(R) such that
f (E ) 5 E for every E P @A(R) is an isomorphism and x ( f (E )) 5 x (E ) for

every E P @A(R). Therefore A a x B. n

Proposition 3. Let x: @(R) P P be an observable on a D-poset P. Let
A1, A2, A P @(R), A1 # A, A2 # A. Now, A1 a x A and A2 a x A if and only

if (A1 ù A2) a x A.

Proof. Let A1 # A, A2 # A and A1 a x A, A2 a x A. By Proposition 2 we have

x (A \A1) 5 x (A ) * x (A1) 5 0 5 x (A ) * x (A2) 5 x (A \A2)

Then

x (A1 ù A2) 5 x (A1 \ (A1 ù (A \A2))) 5 x (A1) * x (A1 ù (A \A2))

5 x (A1) * 0 5 x (A1) 5 x (A )

By Proposition 2, (A1 ù A2) a x A. The opposite assertion is evident. n

Theorem 1. The relation a x is an equivalence relation on @(R).

Proof. The reflexivity and symmetry are evident. We need to prove the

transitivity of a x. Let A, B, C P @(R), A a x B, and B a x C, i.e., there exist

the sets A1, B1, B2, C2 P @(R), A1 # A, B1 # B, B2 # B, C2 # C such that

x (A1) 5 x (A ), x (B1) 5 x (B) 5 x (B2), x (C2) 5 x (C ), and A1 . x B1, B2 . x C2.

Evidently B1 a x B, B2 a x B, which is equivalent to (B1 ù B2) a x B. Let

f 1 and f 2 be isomorphisms, f 1: @A1(R) ® @B1(R), f 2: @B2(R) ® @C2(R)
such that x ( f 1(E )) 5 x (E ) for every E P @A1(R), x ( f 2(F )) 5 x (F ) for

every F P @B2(R). We denote A0 5 f 2 1
1 (B1 ù B2). By the previous proposi-

tions we have

x (A0) 5 x ( f 1( f 2 1
1 (B1 ù B2))) 5 x (B1 ù B2) 5 x (B) 5 x (A )

Let ( f 1 + f 2)(A0) 5 C0. Then

x (C0) 5 x ( f 2( f 1(A0))) 5 x ( f 1(A0)) 5 x (A0) 5 x (B) 5 x (C )

The mapping c : @A0(R) ® @C0(R) defined by the formula c (E ) 5 ( f 1 +
f 2)(E ) for every E P @A0(R) is an isomorphism, and

x ( c (E )) 5 x ( f 2( f 1(E ))) 5 x ( f 1(E )) 5 x (E )

Therefore A0 . x C0. We have A0 # A, C0 # C, x(A0) 5 x (A ), x (C0) 5 x (C ),

and A0 . x C0, which is equivalent to A a x C. n
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Corollary 1. Let A, B, C P @(R), A a x B, x(C ) 5 0. Then (A ø C ) a x

B, A a x (B ø C ), (A ø C ) a x (B ø C ).

Corollary 2. Let A, B P @(R), A a x B, A1, B1 P @(R), A1 # A, B1 #
B, x(A1) 5 0, x (B1) 5 0. Then (A \A1) a x (B \B1).

The factor space of @(R) corresponding to the equivalence relation a x

is denoted @(R)/ a x 5 {[A], A P @(R)}, where [A] 5 {E P @(R), E a x A}.

Definition 3. Let [A], [B] P @(R)/ a x. We say that the element [A] is

less or equal to an element [B] (denoted by [A] # [B]) if for every A P [A]

there exists a Borel set B P [B] such that A # B.
It is evident that [A] # [A] for every [A] P @(R)/ a x. Let now [A] #

[B] and [B] # [A]. Then for every A1 P [A] there exists B P [B] and A2 P
[A] such that A1 # B # A2. Since x (A1) 5 x (A2), then x (A1) 5 x (B). By

Proposition 2, A1 a x B, which is A1 P [B]. In an analogous way we prove

that if B1 P [B], then B1 P [A]. Therefore [A] 5 [B].
Let A, B, C P @(R) and [A] # [B] # [C ]. Then for every A P [A]

there exist B P [B] and C P [C ] such that A # B # C. Therefore [A] 5 [C ].

Theorem 2. The relation # on @(R)/ a x from Definition 3 is a partial

ordering on @(R)/ a x.

Proposition 4. Let A, B P @(R), A a x B. Then (A \B) a x (B \A ).

Proof. Without loss of generality we may assume that there exists an
isomorphism f : @A(R) ® @B(R) and x (E ) 5 x ( f (E )) for every E P @A(R).

We need to construct an isomorphism

c : @A8 # (A \ B)(R) ª @B8 # (B \A)(R)

such that x (E ) 5 x ( c (E )) for every E P A8. We denote B0 5 B \A, A0 5
A \B. Recursively we construct the following sequences of subsets of the sets

A and B:

B1 5 f (A0) ù B0 C1 5 f (A0) ù A ù B A1 5 f 2 1(C1)

B2 5 f 2(A1) ù B0 C2 5 f 2(A1) ù A ù B A2 5 f 2 2(C2)

B3 5 f 3(A2) ù B0 C3 5 f 3(A2) ù A ù B A3 5 f 2 3(C3)

: : :

Bn 5 f n(An 2 1) ù B0 Cn 5 f n(An 2 1) ù A ù B An 5 f 2 n(Cn)

: : :

It is evident that Ai+1 # Ai " i 5 0, 1, . . . ; Ci ù Cj 5 0¤ " i Þ j, i, j 5 1, 2,
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. . . ; Bi ù Bj 5 0¤ ; i Þ j, i, j 5 1, 2, . . . ; f (Ci) 5 B i+1 ø Ci+1 " i 5 1, 2,

. . . ; f i(A i 2 1 \Ai) 5 B i " i 5 1, 2, . . . .

We denote ø `
i 5 1 Ci 5 C, (A ù B) \C 5 H, B0 \ ( ø `

i 5 1 Bi) 5 G, ù `
i 5 1 Ai

5 E. Then we have

f (A ù B) 5 f (A \A0) 5 f (A ) \ f (A0) 5 B \ (C1 ø B1)

5 ((A ù B) \C1) ø (B0 \B1) 5 1 ø
`

i 5 2
Ci 2 ø 1 ø

`

i 5 2
Bi 2 ø H ø G

f (H ) 5 f ((A ù B) \C ) 5 f (A ù B) \ f (C )

5 1 1 ø
`

i 5 2
Ci 2 ø 1 ø

`

i 5 2
Bi 2 ø H ø G 2 \ 1 1 ø

`

i 5 2
Ci 2 ø 1 ø

`

i 5 2
Bi 2 2

5 H ø G

Then x (H ø G) 5 x ( f (H )) 5 x (H ) and x (G) 5 x ((H ø G) \H ) 5 x (H ø
G) * x (H ) 5 0.

We denote Ei 5 f i(E ), i 5 1, 2,. . . . Evidently Ei # Ci " i 5 1, 2, . . . ,

and therefore E i ù Ej 5 0¤for every i Þ j, f (E i) 5 Ei+1, " i 5 1, 2, . . . . Then

f 1 ø
`

i 5 1
Ei 2 5 ø

`

i 5 2
E i , x 1 ø

`

i 5 2
Ei 2 5 x 1 f 1 ø

`

i 5 1
Ei 2 2 5 x 1 ø

`

i 5 1
Ei 2

Therefore

x (E ) 5 x ( f (E )) 5 x (E1) 5 x 1 1 ø
`

i 5 1
Ei 2 \ 1 ø

`

i 5 2
E i 2 2

5 x 1 ø
`

i 5 1
Ei 2 * x 1 ø

`

i 5 2
Ei 2 5 0

Evidently

(A \B) \E 5 ø
`

i 5 1
(Ai 2 1 \Ai ), (B \A ) \G 5 ø

`

i 5 1
Bi

x ((A \B) \E ) 5 x (A \B), x (B \A ) \G) 5 x (B \A )

The mapping c : @(R)(A \B) \ E(R) ® @(R)(B \A) \ G(R) defined by

c (M ) 5 ø
`

i 5 1
f i (M ù (A i 2 1 \Ai ))
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for every M P (A \B) \E is an isomorphism and

x ( c (M )) 5 x 1 ø
`

i 5 1
f i (M ù (Ai 2 1 \A i )) 2 5 %

`

i 5 1
x ( f i (M ù (Ai 2 1 \Ai )))

5 %
`

i 5 1
x (M ù (Ai 2 1 \Ai )) 5 x 1 ø

`

i 5 1
(M ù (Ai 2 1 \A i )) 2 5 x (M )

Therefore (A \B) a x (B \A ). n

The consequence of Proposition 4 is the following assertion.

Theorem 3. Let A1, A, B1, B P @(R), A1 a x B1, A a x B, and A1 # A, B1

# B. Then (A \A1) a x (B \B1).

Proof. With respect to Corollary 2 we may assume that A1 . x B1 and

A . x B. Let f , c be the isomorphisms f : @A(R) ® @B(R) and c : @A1(R)
® @B1(R). Then f (A1) a x B1. Indeed, ( c 2 1 + f ) is an isomorphism, ( c 2 1 +
f ): @B1(R) ® @ f (A1)(R), and

x (( c 2 1 + f )(E )) 5 x ( f ( c 2 1(E ))) 5 x ( c 2 1(E )) 1 x ( c ( c 2 1(E ))) 5 x (E )

for every E P @B1(R). By Proposition 4, ( f (A1) \B1) a x (B1 \ f (A1)). The

mapping h : @A \A1(R) ® @B \B1(R),

h (E ) 5 f ( f 2 1( f (E ) ù (B \B1))) ø f ( c 2 1( f (E ) ù B1))

for every E P @A \ A1(R) is an isomorphism and

x ( h (E )) 5 x ( f ( f 2 1( f (E ) ù (B \B1))) % x ( f ( c 2 1( f (E ) ù B1)))

5 x ( f (E ) ù (B \B1)) % x ( f (E ) ù B1)

5 x (( f (E ) ù (B \B1)) ø ( f (E ) ù B1))

5 x ( f (E )) 5 x (E )

for every E P @A \ A1(R). Therefore (A \A1) a x (B \B1). n

Theorem 3 enables us to define a partial binary operation * on the

factor space @(R)/ a x in the following way.

Definition 4. Let [A], [B] P @(R)/ a x. Now, [B] * [A] is defined if and
only if [A] # [B] (i.e., there exist A1 P [A] and B1 P [B] such that A1 #
B1) and [B] * [A] 5 [B1 \A1].

Theorem 4. A partial binary operation * is a difference on @(R)/ a x.

Proof. The proof is obvious.
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The element [R] is the greatest element in @(R)/ a x and therefore (@(R)/

a x , # , * , [R]) is a D-poset.

Proposition 5. Let [A], [B] be two elements of @(R)/ a x. Let B1, B2 P
[B]. Then

{[A ù B1], A P [A]} 5 {[A ù B2], A P [A]}

Proof. Let A1 P [A] be an arbitrary element. Without loss of generality
we can to assume that B1 . x B2, and by Proposition 4, (B1 \B2) . x (B2 \B1).

Let c be an isomorphism, c : @B1 \ B2(R) ® @B2 \ B1(R), such that x ( c (E ))

5 x (E ) for every E P @B1 \B2(R). We denote

D1 5 ( c 2 1(A1 ù (B2 \B1))) \A1

D2 5 (A1 ù (B1 \B2)) \ c 2 1(A1 ù (B2 \B1))

D3 5 ( c 2 1(A1 ù (B2 \B1))) ù A1

Obviously A1 ù B1 5 A1 ù B1 ù B2 ø D2 ø D3. If A 5 (A1 \ ( c (D1) ø D2))

ø D1 ø c (D2), then A a x A1 and A ù B2 5 A1 ù B1 ù B2 ø c (D2) ø c (D3),

and therefore A1 ù B1 a x A ù B2, i.e., [A1 ù B1] P {[A ù B2], A P [A]}.

We have

{[A ù B1], A P [A]} # {[A ù B2], A P [A]}

Similarly we prove that {[A ù B2], A P [A]} # {[A ù B1], A P [A]}.

Therefore {[A ù B1], A P [A]} 5 {[A ù B2], A P [A]}. n

Proposition 6. Let M P [A1 ù B1], A1 P [A], B1 P [B]. Then there exist

A P [A], B P [B] such that M 5 A ù B.

Proof. Let us asume that M . x (A1 ù B1) and so M \ (A1 ù B1) . x

(A1 ù B1) \ M.
Let c be an isomorphism, c : @(A1 ù B1) \ M(R) ® @M \ (A1 ù B1(R), such that

x ( c (E )) 5 x (E ) for every E P @(A1 ù B1) \ M(R) we put

A 5 (A1 \ c 2 1(M \A1)) ø (M \A1), B 5 (B1 \ c 2 1(M \B1)) ø (M \B1)

Then A P [A], B P [B], and A ù B 5 M. n

Proposition 7. Let [D] 5 max{[A ù B], A P [A], B P [B]}. Then [D] 5
[A] Ù [B].

Proof. By Proposition 6, for every D P [D] there exist A P [A], B P
[B] such that D 5 A ù B. Then D # A, D # B and therefore [D] # [A],

[D] # [B].
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Let [C ] P @(R)/ a x , [C ] # [A], [C ] # [B], i.e., for every C P [C ]

there exist AC P [A], BC P [B] such that C # AC , C # BC. Then C # AC

ù BC since [C ] # [D]. n

Proposition 8. Let [A], [B] be two elements from @(R)/ a x , B P [B].

Then for every two elements [C1], [C2] P {[A ù B], A P [A]} there exists

an element [C ] P {[A ù B], A P [A]} such that [C1] # [C ] and [C2] # [C ].

Proof. Let A1, A2 P [A] be such that [A1 ù B] 5 [C1], [A2 ù B] 5 [C2].

Without loss of generality we assume that (A1 \A2) . x (A2 \A1). Let f be an

isomorphism f : @A1\ A2(R) ® @A2\ A1(R) such that x ( f (E )) 5 x (E ) for every
E P @A1 \A2(R). We denote

D2 5 [(A2 \A1) \ f ((A1 \A2) ù B)] ù B, D1 5 f 2 1( f ((A1 \A2) ù B) \B)

and we put A81 5 (A1 \ f 2 1(D2)) ø D2, A82 5 (A2 \ f (D1)) ø D1. Evidently

A81 a xA82, (A 81 ù B) a x (A 82 ù B) and A1 ù B # A81 ù B, A2 ù B # A 82 ù B.
Therefore we put [C ] 5 [A 81] 5 [A 82]. n

Theorem 5. Let x:@(R) ® T be an observable on a D-poset T. Let the

spectrum of the observable x be finite. Then @(R)/ a x is a D-lattice of pairwise

compatible elements, which is a Boolean D-poset (Chovanec and KoÃpka,

1995).

Proof. Let [A], [B] P @(R)/ a x be arbitrary two elements. By Proposition

8 and Proposition 7 there exists

[D] 5 max{[A ù B], A P [A], B P [B]} 5 [A] Ù [B]

Therefore @(R)/ a x is a D-lattice.
Let D P [D]. Then there exist elements A P [A] and B P [B] such that

D 5 A ù B. Then

[A] * [D] 5 [A \D] 5 [A \B] # [R \B] 5 [R] * [B] 5 [B] ’

which implies the compatibility of [A] and [B]. n

Fig. 1.
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Example 1. Let a, b, c be different real numbers. Let x be the observable

on a D-poset of the unit interval [0, 1], defined by.

x (E ) 5 5
0 if E 5 0¤

0.4 if a P E, b, c ¸ E

0.3 if b P E, a, c ¸ E

0.3 if c P E, a, b ¸ E

0.7 if a, b P E, c ¸ E

0.7 if a, c P E, b ¸ E

0.6 if b, c P E, a ¸ E

1 if a, b, c P E

Then the factorization by Theorem 5 is sketched in Fig. 1.
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